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Abstract

Detecting tampered text in document images poses unique
challenges compared to natural image manipulation. Un-
like natural images, text tampering often involves splicing
or copy-move operations where background color, font size,
and style closely match, making it difficult to rely solely on
visual clues. High-frequency domain information can as-
sist in identifying tampered regions, but such cues are often
insufficient due to carefully forged text regions obscuring
critical details.

To address these issues, we propose TextHydra, a novel
framework tailored for text tampering detection and lo-
calization. TextHydra incorporates three complementary
heads: (1) an RGB head for visual features, (2) a frequency
head leveraging Discrete Cosine Transform (DCT) to ex-
tract Block Artifact Grids (BAG) inconsistencies, and (3) a
noise head to capture residual out-of-distribution artifacts.
These features are fused and processed through a trans-
former block for robust detection and precise localization.

Evaluated on the Tianchi Contest for Text Tampering
Detection [34], TextHydra significantly outperforms exist-
ing methods, demonstrating its effectiveness in tackling this
challenging task.

1. Introduction

1.1. Background

The robust verification of credentials and documents re-
mains a fundamental and enduring concern within financial
scenarios, holding significant implications across diverse
sectors. Particularly in digital finance, the assessment of
non-standard documentation is a common and critical task.
To ensure security and foster trust, verification processes
must confirm authenticity, reliability, and guarantee tamper-
proof and forgery-proof properties. '

Yet, advancements in image manipulation techniques,
including splicing, copy-move operations, and generative

IFor simplicity, tamper and forge will be used interchangeably in this
paper.
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models, make manual detection of document tampering in-
creasingly difficult. Therefore, a broadly applicable and ef-
ficient tampering detection algorithm is essential. Such a
solution is critical for ensuring document authenticity, pro-
viding a reliable foundation for digital finance, and support-
ing the continued growth and stability of the digital financial
industry.

1.2. Task

Our task is to develop a model capable of detecting forgery
in an input document image and outputting the region of in-
terest, represented by the upper-left and lower-right points
of the rectangular tampered region. Detecting tampered
text in document images poses unique challenges compared
to manipulation detection in natural scene images. Unlike
natural image tampering, text manipulation often involves
splicing or copy-move operations where background color,
font size, and style closely match, making it difficult to rely
solely on visual clues. Additionally, while high-frequency
domain information can assist in tampering detection, such
cues are often insufficient due to carefully forged regions
obscuring critical details. Understanding these distinctions
and challenges is crucial, and further discussions on these
aspects are provided in Section 2.

1.3. Dataset

The dataset used for this study consists of images of doc-
uments, either captured by cameras or taken from screen-
shots. To ensure robustness, the dataset also includes
more diverse examples, such as photographs of shop signs.
Among the tampered images, techniques such as copy-
move, splicing, or generative models have been used. How-
ever, for tampered images, the authentic originals are not
provided. Figure | illustrates a few examples.

The dataset is composed of a labeled training set and an
unlabeled testing set, containing 13,000 and 1,200 images,
respectively. The training set has a fairly balanced distribu-
tion, with 5,641 tampered images, close to half of the total
(6,500). Each labeled image contains at most one tampered
region.
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Figure 1. Examples of tampered images. From top to bottom:
(1) Splicing in a screenshot, (2) Copy-move forgery in a scanned
document, (3) Copy-move forgery in a document photograph, and
(4) Al-generated forgery in a shop sign photograph.

2. Related Works

2.1. General Image Manipulation Detection

Early research in image forensics primarily addressed the
detection of specific manipulation types, including copy-
move [7] [10], splicing [8] [13] [19], and removal [16]. Ac-
knowledging the inherent ambiguity of real-world tamper-
ing, researchers shifted focus towards general manipulation
detection [17] [22] [20]. For instance, RGB-N [15] pro-
posed a two-stream network, leveraging RGB features to
capture visual anomalies and noise features to model incon-
sistencies between manipulated and authentic regions for
localization. SPAN [22] takes a different approach, mod-
eling pixel relationships within image patches at various
scales through a pyramid of local self-attention blocks. Fur-
ther, PSCCNet [23] employs hierarchical feature extraction
with top-down and bottom-up pathways to determine image
manipulation.

Drawing inspiration from the success of general-purpose
object detection models like DETR [21] and subsequent
works such as Sun et al. [24], a trend has emerged in im-
age manipulation detection that leverages object-level mod-
eling. For instance, ObjectFormer [25] exemplifies this ap-
proach by explicitly modeling consistency not only at the
patch level but also by utilizing learnable embeddings as ob-
ject prototypes. However, the direct application of object-
level modeling presents a significant challenge in the con-

text of document tampering detection. Unlike natural im-
ages with distinct objects, documents typically lack clearly
defined semantic objects suitable for such modeling.

2.2. Document Image Tampering Detection

Early investigations into text forgery detection often relied
on identifying specific handcrafted features indicative of
tampering distortions. Some researchers framed this prob-
lem as printer source identification, recognizing external
prints as potential forgeries [1] [18]. Others focused on an-
alyzing distortions in elements such as fonts [6], text line
orientation [5], geometry [9], image quality [2], DCT co-
efficients [4], and local texture patterns [11]. While offer-
ing high interpretability, these methods often suffer from
limited generalization capabilities, particularly when con-
fronted with more sophisticated or concealed manipula-
tions.

Building upon the success of image manipulation de-
tection in natural images, a prevalent trend in recent text
forgery detection involves employing dual-stream encoders.
These architectures aim to extract complementary informa-
tion by processing the input through both the RGB domain
and a transformed domain. For instance, Xu et al. [28]
leverage residual filters within the second stream to capture
subtle manipulation traces in pixel correlations. Frequency-
based approaches are also common, with some methods
integrating information from the discrete cosine transform
[27] and high-pass filters [26]. Expanding beyond solely
visual information, STFL-Net [30] incorporates OCR data
alongside RGB input for detecting tampered text in screen-
shots. Similarly, DTD [29] and ASC-Former [33] propose
utilizing JPEG compression traces, among others, coupled
with a curriculum learning procedure, to enhance forgery
detection. Our approach also adopts this multi-stream strat-
egy, with a particular emphasis on the careful design of
network heads to ensure the extraction of unique and non-
overlapping information.

3. Method

In this section, we propose TextHydra, an innovative model
tailored for document forgery detection. The overall archi-
tecture of TextHydra is illustrated in Figure 2. TextHydra
comprises three primary components: (1) a Visual Percep-
tion Head designed to extract visual features from the orig-
inal image, (2) a Frequency Perception Head aimed at cap-
turing high-frequency information from the image, and (3)
a Noise View module that explores distribution inconsisten-
cies between forged and authentic regions. By synergisti-
cally integrating these complementary modalities, TextHy-
dra achieves robust and accurate detection of forged content
in document images.
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Figure 2. The overall architecture of our model. The model consists of three heads: the Visual Perception Head forms the main branch,
while the Frequency Perception Head and Noise View act as auxiliary branches to assist the Visual Perception Head during inference.
Different branches are represented using distinct background colors. The feature maps extracted from the three views are fused using the
scSE module[14], followed by processing through an encoder-only architecture for detection and localization.

3.1. Visual Perception Head

We employ a pre-trained YOLO11 detection model [31] for
our Visual Perception Head, using it as a feature map ex-
tractor. Specifically, we extract the output from the model’s
intermediate layer as the visual feature map, effectively cap-
turing visual characteristics. To improve the robustness and
generalization of the Visual Perception Head during train-
ing, we incorporate a series of data augmentation strategies,
including random rotations, scaling, HSV space transfor-
mations, and brightness adjustments. These augmentations
are designed to enhance the model’s ability to adapt to di-
verse input variations.
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Figure 3. The image on the left represents the original docu-
ment image, while the image on the right illustrates the result after
applying Discrete Cosine Transform (DCT), high-pass filtering,
and subsequently performing an Inverse Discrete Cosine Trans-
form (IDCT). The transformation highlights high-frequency com-
ponents while suppressing low-frequency information.

3.2. Frequency Perception Head

When images are acquired using digital devices such as
cameras or smartphones, they are subjected to patching
and compression operations, primarily through the quan-
tization of Discrete Cosine Transform (DCT) coefficients.

These processes inherently introduce Block Artifact Grids
(BAG), a characteristic distortion pattern resulting from
block-based compression techniques [3].Human vision pri-
marily acts as a low-pass filter, effectively focusing on low-
frequency information while overlooking high-frequency
details such as edges and fine textures. To address this
limitation and complement the Visual Perception Head,
which mimics the role of human vision by extracting low-
frequency features, we design a Frequency Perception Head
to specifically capture high-frequency edge information
critical for identifying tampered regions. This avoids re-
dundant extraction of low-frequency content and ensures
the model efficiently utilizes high-frequency details for en-
hanced inference.

In particular, we employ the Discrete Cosine Trans-
form (DCT) to map the input image X into the frequency
domain, where a high-pass filter is applied to isolate the
high-frequency components. These components are sub-
sequently transformed back to the spatial domain via the
Inverse Discrete Cosine Transform (IDCT), enabling seam-
less feature interaction while preserving local consistency.
Thus, the processed input can be represented as follows:

Z = Toer (Fr (Toer(X), 7)) (1)

First, the input image X is transformed into the frequency
domain using the Discrete Cosine Transform Tpcr(X). A
high-pass filter Fj, is then applied, parameterized by ~,
to selectively extract high-frequency components, such as
edges and texture inconsistencies. Unlike human vision,
which inherently acts as a low-pass filter and focuses on
low-frequency content, the Frequency Perception Head em-
phasizes high-frequency information. Finally, the extracted
high-frequency components are transformed back to the
spatial domain via the Inverse Discrete Cosine Transform
7;C1T, producing Z, a high-frequency representation that



enhances the detection and localization of tampered re-
gions. The processed image is subsequently passed through
a second YOLO11 model [31], with its intermediate layer
leveraged as the frequency-domain feature. The effect
of processing the image using the operations described in
Equation 1 is shown in Figure 3. As demonstrated, the
transformation highlights high-frequency components, ef-
fectively suppressing low-frequency information to facili-
tate tampering detection.
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Figure 4. The constrained convolutional layer. The red coefficient
is -1 and the coefficients in the green region sum to 1. [12]

3.3. Noise View

We utilize a learnable constrained convolutional layer to
extract the noise view. Unlike standard convolutional lay-
ers, which primarily capture image features, the constrained
convolutional layer is specifically designed for document
forgery detection tasks, where the goal is to identify tamper-
ing footprints. The convolutional filter is constrained such
that the weight at the center of the filter is fixed to —1, while
the sum of all other weights is constrained to 1, as shown in
Figure 4. This design allows the layer to effectively learn
the distributional inconsistencies between the tampered re-
gions and the authentic parts of the document.

The constraints applied to the convolutional weights can
be described mathematically as follows:

we(0,0) = —1, B )
2 (5.4)#0.0) Weld: ) = 1,
where w.(i, j) represents the weights of the convolutional
filter, w.(0, 0) denotes the center weight, and (7, j) # (0, 0)
refers to all non-center weights.

By imposing these constraints, the convolutional layer
is guided to focus on capturing discrepancies between the
real image and tampered regions, rather than general image
features.

The intuition behind this design is further illustrated
through the concept of prediction residuals. Specifically,
the true pixel value is subtracted from the predicted pixel

value, yielding the residual, as shown below:
r=1-1, 3)

where r is the prediction residual, I represents the pre-
dicted pixel value obtained from the constrained convolu-
tional layer, and I denotes the true pixel value.

This residual highlights the differences between the pre-
dicted and actual pixel intensities, enabling the constrained
convolutional layer to emphasize tampering footprints that
deviate from the expected distribution. Through this mech-
anism, the constrained layer plays a critical role in captur-
ing noise-based inconsistencies and enhancing the model’s
ability to detect forgeries.
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Figure 5. The architectural design of cSE, sSE and scSE blocks.
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3.4. Fusion

We utilize the Concurrent Spatial and Channel Squeeze &
Excitation (scSE) module to fuse features from different
realms. The scSE module combines the strengths of the
sSE and cSE modules, allowing feature maps to be recali-
brated along both the channel and spatial dimensions[14],
as shown in Figure 5. This enhances meaningful features
while suppressing weaker ones.

Given the output of the Frequency Perception Head, de-
noted as I}, and the output of the Noise Map, denoted as 12,
the scSE module is applied to concatenate and incorporate
these features. Afterward, a 1 x 1 convolution kernel is em-
ployed to reduce the number of channels, producing the fea-
ture map I,. The feature map I, is then concatenated with
the output of the Visual Branch, denoted as Irgg. The com-
bined features are processed through a second scSE module,
resulting in the final fused output I.

3.5. Localization

Inspired by [32], the fused output [ is processed through an
encoder-only transformer architecture, which produces the
discriminative query embeddings D’. These embeddings
encode tampering cues from all three realms. To perform
manipulation localization, we utilize a multi-layer percep-
tron (MLP) to process D', ultimately generating the mask
vector P.



4. Experiment

We evaluate our model on the text tampering detection and
localization task in the Tianchi contest [34], with the goal
to localize the forgery region within the images or report
there is none. Below, we introduce the experimental setup
in Section 4.1, and present results in Section 4.2, and finally
we perform an ablation study to justify the effectiveness of
different components in Section 4.3, and show the visual-
ization results in Section 4.4.

4.1. Experimental Settings

4.1.1. Testing Dataset

We use the dataset offered by the contest [34], which con-
sists of a labeled training set with 13000 images and an un-
labeled testing set with 1200 images. ° To prevent over-
fitting, we partition the given labeled dataset with ratio 4 : 1
to get an evaluation set of size 2600, with the rest being our
training set.

4.1.2. Evaluation Metrics

The performance of the proposed method is evaluated by the
F1 score. In detail, the region output by the model will be
compared with ground truth, and is accepted if the Intersec-
tion over Union (IoU) surpasses some threshold. Numbers
of TP(True Positive), TN(True Negative), FP(False Posi-
tive) and FN(False Negative) will then be calculated, as

well as the precision rate P = % and recall rate
R = 75 Finally F1 can be acquired by F1 = 25K

4.1.3. Implementation Details

All images are resized to 224 x 224. We use SGD for op-
timizaion with a learning rate of 0.001, which is decayed
automatically. We train the complete model for 70 epochs
with a batch size of 16, and early stopping is applied. We
also leverage self-supervised learning.

4.1.4. Baseline Models
We compare our method with a few baseline models:

* DTD [29], which consists of a Frequency Perception
Head to compensate the deficiencies caused by the in-
conspicuous visual features, and a Multi-view Iterative
Decoder for fully utilizing the information of features in
different scales.

¢ ASC-Former [33], which takes advantage of the comple-
mentarity of various transformed domains, with a plugin-
play Tampered-Authentic Contrastive Learning module
aiming to further increase its discrimination ability.

e YOLO11 [31], which is the current latest model in the
YOLO series, a pre-trained general-purpose architecture
designed for both object detection and image segmenta-
tion.

2Since only one dataset is used, we will simply refer to it as the dataset.

For those output a mask instead of a bounding box, we
append a function afterwards to do the transformation.

4.2. Experiment Results

We first test different settings of the YOLO11 model based
on the Mean Average Precision (MAP) metrics. The criteria
of YOLOI1 is defined as

Loss = Apoz - LOSSpoz + Acis - L0SSc1s + Agfr - Lossqp; (4)

in which Lossy,, represents the bounding box regres-
sion loss, which measures the accuracy of the predicted
bounding box coordinates by penalizing deviations from the
ground truth. Loss.;s denotes the classification loss, which
quantifies the discrepancy between predicted and ground
truth class probabilities, ensuring accurate object category
predictions. Lossgy; refers to the Distribution Focal Loss, a
specialized loss function that models bounding box regres-
sion as a discrete probability distribution over predefined
bins. It minimizes the divergence between the predicted
and target distributions, enabling the model to capture un-
certainties and improve localization precision. The weights
Abozs Acls» and Age; are hyperparameters that balance the
contributions of these loss components during training.

Table | shows the results of YOLOI11 on the evaluation
set. Although the setting (7.5, 2.0, 1.0) maximizes MAP50,
we picked (7.5, 0.5, 2.5) as our final setting as it outper-
forms others on the more comprehensive metric MAP50-
90.

Abox  Acs  Adgrr MAPS0 MAP50-90

75 05 15 0.892 0.679

7 0.5 2 0.897 0.685
7.5 1 1 0.891 0.681
77 01 1.7 0.844 0.686
70 02 23 0.878 0.672
75 05 25 0914 0.698
90 05 1.0 0.906 0.683
75 20 1.0 0.921 0.671

Table 1. MAP50 and MAP50-90 of YOLOL11 results. The former
represents the MAP calculated at an IoU threshold of 0.50, and the
latter stands for MAP calculated across multiple thresholds from
0.50 to 0.90 in increments of 0.05.

We list the F1 scores in Table 2, from which we can
observe TextHydra markedly outperforms others on the
dataset.

It is worth noting that the training input and output for-
mats of DTD and ASC-Former include masks, which are
not fully aligned with the requirements of our task. During
the process of converting masks to regions, information loss
may occur (e.g., determining whether small regions corre-



[EEeR LTI QR TITL LN S el train_6023.JPEG
»mt baonsrna-gasvitg siv gritotinor ]

o X AR ERERD
b sorlan2 bivadl asns-ognimod)  rnd AN,
sepalon stsb ni szuzin 2 bs) vosving

0 oS umiS gaoT aixgaoY ud |
iz olirdsy aiosls 101 gainnslq 1
airsl bis msbol 1 lastoiM irtoud 7

£108 2007 al zs161 x5

101iM Il smblsA stV nozzgnil
ftudz vd noitsaitilamA srudsdT asobl
t

_____

Figure 6. Visualization of the predicted tampering region by our method.

Method F1
DTD 56.22
ASC-Former 35.84
YOLOI11 78.84
Ours 94.27

Table 2. Comparisons of F1 scores (%) of different models.

sponding to mask fragments should be filtered out). Conse-
quently, the reproduced results for these two models show
suboptimal performance in our experiments.

4.3. Ablation Study

Firstly, to evaluate the effectiveness of different heads of
our method, we test the baseline model with Frequency Per-
ception Head (FH) and the Noise Head (NH) separately on
the dataset. Trivial concatenation is used for fusion, and
self-supervised learning is not used. The results are shown
in Table 3, from which we can see the F1 score increase
by 8.12% with FH, by 5.54% with NH, and by 8.79% with
both. The progress validates that the use of additional heads
FH and NH effectively improves performance of our model.

We then evaluate the effectiveness of the scSE module
adopted and the self-supervised learning (SSL) procedure
adopted in our method. The results are listed in Table 4. We
can observe that the F1 score decrease by 5.52% without
scSE, while decrease by 2.25% without SSL, which demon-

Variants F1

Baseline (YOLO11) 78.84
Baseline + FH 86.96
Baseline + NH 84.38

Baseline + FH+ NH  87.63

Table 3. Ablation results on the dataset using different combina-
tion of heads.

strates the effectiveness of these two techniques.

Variants F1

w/o scSE  88.75
w/o SSL  92.02
Ours 94.27

Table 4. Ablation results on the dataset using different variants of
TextHydra.

4.4. Visualization Results

We provide a few results of TextHydra in Figure 6. The
results demonstrate that our method is capable of detect-
ing tampering precisely, even when the forgery is extremely
tiny.
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